
Documentation File for IBSGATEWAY840.dll

Updated : 23/11/2021

A new naming convention for the Infusion Gateway has been introduced. It is IBSGATEWAYnnn.dll,
where the nnn is the version number. (Formally IBSGW.DLL)

This version number DOES NOT relate to the Infusion version number.

IBSGATEWAY815 and higher are currently able to work with Infusion version 8.100 and higher.

Within the IBSGATEWAYnnn.dll there is a class name “Gateway”.

Add the DLL (IBSGATEWAY8nn.DLL) to your applications references and then create an instance of the
class contained within (IBSGATEWAY8nn.Gateway) as an object.

Example VFP :

oGateway=CREATEOBJECT("ibsgateway835.gateway")
nSuccess=oGateway.setpath("C:\Infusion\--DEMO--")
nSuccess=oGateway.login('My Application Name')

if nSuccess <> 1 (check properties)
 oGateway.LastError
 oGateway.LastErrorMessage
 ...

 Eg
 oGateway.LastError = 900

oGateway.LastErrorMessage =
'The system is in use, Possible Backup, Reindex or other in progess.

Contact Administrator.'

Get some other properties to inform User

oGateway.LastError = 901
oGateway.LastErrorMessage =

‘There is a Backup being done Log back on after ' +
dtoc(oGateway.AllowOn)

 Properties set when login() and Other Methods called.

 oGateway.AllowOn Date Time
 oGateway.LogOffBy Date Time
 oGateway.AdminMessage Character
 oGateway.SentBy Character
 oGateway.ForceOff Character ‘.T.’ or ‘.F.’

Alternatively, you can programme to interrogate the Windows Registry for the latest version of the
Gateway file. An example of how to do this in .Net is:

public static class GatewayHelper
 {

 /// <summary>
 /// Gets the registered gateways from the registry.
 /// </summary>
 /// <returns>gateways in the format of [gatewayname][version].Gateway ie ibsg
ateway712.Gate way</returns>
 private static List<String> GetRegisteredGateways()
 {
 var keys = Registry.ClassesRoot.GetSubKeyNames().Where(x => x.StartsWith(
"ibsgateway", StringComparison.InvariantCultureIgnoreCase));

 return keys.ToList();
 }

 public static string GetLatestRegisteredGateway()
 {
 string result = string.Empty;

 List<String> registeredGateways = GetRegisteredGateways();

 // Create the dictionary for holding the registered gateway versions
 Dictionary<int, string> versions = new Dictionary<int, string>();

 // Loop each of the registered entries
 foreach (string registeredGateway in registeredGateways)
 {
 string[] gwArr = registeredGateway.Split('.');

 if (gwArr.Count() > 0)
 {
 string[] versionNumArr = gwArr[0].ToUpper().Split(new string[] {
"IBSGATEWAY" } , StringSplitOptions.RemoveEmptyEntries);

 if (versionNumArr.Count() > 0)
 {
 int versionNum = 0;
 if (Int32.TryParse(versionNumArr[0], out versionNum))
 {
 if (!versions.ContainsKey(versionNum))
 {
 versions.Add(versionNum, registeredGateway);
 }
 }

 }
 }
 }

 if (versions.Count > 0)
 {

 result = versions.OrderByDescending(x => x.Key).FirstOrDefault().Value
;

 }

 return result;
 }
 }

 // Attempt to get the latest gateway version registered on the server
 string latestGateway = GatewayHelper.GetLatestRegisteredGateway();
 if (string.IsNullOrWhiteSpace(latestGateway))
 {
 throw new InfusionException("A registered gateway could not be found");
 }

 // Create the gateway object
 Type gatewayType = Type.GetTypeFromProgID(latestGateway);
 dynamic ibsGw = Activator.CreateInstance(gatewayType);

 // Set the Infusion data path
 ibsGw.setpath(appContext.FixedAsset_JournalExportPath);

Along with this new naming convention we have introduced the need to ‘Logon’ to Infusion before calling
any of the DLLs functions.

LOGIN – Connects the DLL to Infusion

This function is required to be called at the start of your application (or as required by your application).
It must be called before any other functions will operate. Once called it is not necessary to call it again,
until you have either called LOGOUT, DESTROY or removed the reference to the object which created
the Login Call in your application.

login(“My Application Name”)

The parameter “My Application Name” is a string which informs Infusion the name of the application
creating the connection. This is used by Infusion to display information about ‘Who’s Logged On’.
While this string can be any value, it is expected that you will provide a useful value to the client.

LOGOUT – Disconnects the DLL from Infusion

Once you have finished interacting with Infusion use this call to disconnect the DLL from Infusion. There
are no parameters required with this function. If you neglect to call this function before destroying the
object within your application, the DLL will automatically logout.

logout()

Return Values

All Procedures and Functions have been updated to return standard values.

 Where the request is unsuccessful due to an error the DLL will return a value of 0 (Zero)

 Where the DLL is NOT logged in the DLL will return a value of -1 (negative 1)

 Where the request was successful and no other value needs to be returned, 1 will be returned

 Where the request was successful and a return value is expected, that value will be returned.

Example:

oGateway.Get(“name”) could return two types of values, 0 (failure) or “Some String” the
required result value
oGateway.Append() could return either a 1 (success) or 0 (failure)

Where your application is expecting a 0 to be returned as a valid response, you will need to ensure the
login is performed or the 0 being returned may be misinterpreted.

When 0 or -1 are returned you should always check the LastError and LastErrorMessage properties for
the reason.

The following procedures and properties can be called / set from the base class.

Standard DBF Read / Write Functions

APPEND – Adds a blank record to the currently selected DBF table

append()

CLOSE - Closes a DBF table

close("AliasName")

DELETERECORD – Deletes the currently selected record in a DBF table

deleterecord("AliasName")

GET - Returns the value of a field in a DBF table

get("FieldName") - Note the field must be in the currently selected DBF table
get("AliasName.FieldName")

GetAuditFromCustInvNumber – Returns the Audit number of a customer Invoice

Returns the Audit Number for success and 0 for failure. Note: If the invoice does not exist or is
Pending, then 0 will be returned.

GetAuditFromCustInvNumber(“12345”)

GOBOTT - Moves the record pointer to the bottom of the current DBF table.

gobott()

GOTOP - Moves the record pointer to the top of the current DBF table.

gotop()

LOCATE – Positions the record pointer at the first record which matches the supplied criteria.

Returns 1 for success and 0 for failure. Note: When locating for a character value enclose it in a set of
single quotes or [].

locate(“account=123”)
locate(“grp=’ABC’”)
locate(“grp=[ABC]”)

OPEN - Opens a DBF table
Note: This also selects the DBF table as the current work area

open("DBFName","AliasName")

RECCOUNT - Returns the number of records in the current DBF table

reccount()

RECLOCK – Attemps to lock the current record in the currently selected DBF table

Returns 1 if the record lock was successful or 0 if it failed

reclock()
RECUNLOCK – Unlocks the current record in the currently selected DBF table

recunlock()

REPLACE – Writes a single value to a field in the currently selected DBF table
REPLACESTR, REPLACENUM, REPLACEDATE can also be used for specific values.
Note: You may optionally specify a DBF name preceding the field name.

Returns 1 if the replace command succeeded or 0 if it failed.

replace(“myStringField”,”my stringvalue”)
replace(“myNumberField”,123.45)
replace(“myLogicalField”,.t.)
replace(“myFile.mField”,”my stringvalue”)
replace(“myField”,”myOtherField”)

SELECT - Selects an open DBF table as the current work area
Note: This function also returns the work area number

select("AliasName")

SETFILTER - Sets a filter on the currently selected DBF table

setfilter("account=123")
setfilter("account>10 and account < 100")

SETORDER - Sets the controlling Index of the currently selected DBF table

setorder("account”)

SETPATH - Sets the path to the Infusion Data folder.
Note: This must be set or the files are expected to be in the same directory as your application is being
run from. You can use either Mapped paths or UNC path names. It is optional to have a final \ in the
path name.

Alternatively you can set this value in the property called DataPath (Note: It is not cleared by the
VarReset function.) but be sure to add the \ on the end or your application will fail.

setpath("\\server\share name\directory\data")
setpath("\\server\share name\directory\data\")
setpath("c:\my application\data")
setpath("c:\my application\data\")
setpath("..\infusion\data") - the infusion directory is located in the parent folder of the current application
folder.
setpath("..\infusion\data\")

SETPDFPATH - Sets the path to the folder containing the additional files required for the
EmailCustomerInvoice and EmailSupplierInvoice functions. This function is in the main Gateway
and PDFGateway DLLs

Note: This must be set or the files are expected to be in the same directory as your application is being
run from. You can use either Mapped paths or UNC path names. It is optional to have a final \ in the
path name. Call this function AFTER you have called SETPATH. This path value is appended to any
other values set by SETPATH and SETROOTPATH

SETROOTPATH - Sets the root path to Infusion. This is where the IBSMAIN.EXE file is located.
This function is in the main Gateway and PDFGateway DLLs. It is used to Identify the main
Infusion folder.

Note: This must be set or the files are expected to be in the same directory as your application is being
run from. You can use either Mapped paths or UNC path names. It is optional to have a final \ in the
path name. Call this function AFTER you have called SETPATH. This path value is appended to any
other values set by SETPATH and SETPDFPATH

SKIP - Moves to the next record in the currently selected DBF table.
Note: This function returns 1 if the skip was successful or 0 if it failed (EOF encountered)

skip(“AliasName”)

Next System Generated Number Functions

Passing a parameter of 0 will return the next number and then increment it. Passing a parameter of 1
will only enquire the next number, it will not be incremented.

NEXTAUDIT - Returns the next System Audit Number.
nextaudit(0)
nextaudit(1)

NEXTCUST - Returns the next Customer Account number.
Note: If automatic account numbering is turned off then 0 is returned, otherwise the account number is
returned.

nextcust(0)
nextcust(1)

NEXTINV - Returns the next Customer Invoice number.

nextinv(0)
nextinv(1)

NEXTJOB - Returns the next Job Management Job ID.
Note: If automatic job numbering is turned off then 0 is returned, otherwise the job id number is returned.

nextjob(0)
nextjob(1)

NEXTLINK - Returns the next System Link Number.

nextlink(0)
nextlink(1)

NEXTPO - Returns the next Supplier Purchase Order number.

nextpo(0)
nextpo(1)

NEXTQUOTE - Returns the next Customer Quote number.

nextquote(0)
nextquote(1)

NEXTSUPP - Returns the next Supplier Account number.
Note: If automatic account numbering is turned off then 0 is returned, otherwise the account number is
returned.

nextsupp(0)
nextsupp(1)

Customer / Supplier / Product Creation Functions

CREATECUST – Creates a new Customer account

The only parameter to be passed is the account number to be created. Once the account is created,
use the replace commands to fill in other fields.

After all the other fields have been populated you need to call the Cust_UpdateSearchPlus function.

You can use the NEXTCUST function to obtain the next account number.

createcust(10)

CUST_UPDATESEARCHPLUS – Updates the Searchplus field of Customer.DBF with its calculated
value

The only parameter to be passed is the account number to be updated. Call this function after updating
any fields in the Customer.dbf

Cust_UpdateSearchPlus(10)

CREATESUPP – Creates a new Supplier account

The only parameter to be passed is the account number to be created. Once the account is created,
use the replace commands to fill in other fields.

You can use the NEXTSUPP function to obtain the next account number.

createsupp(10)

CREATEPRODUCT(cProductCode, cProductDescription) – Creates a new Product Code

Two parameters are passed to this function. The Product Code to create and its Description.

The Product Code in Infusion is uppercase. The function automatically converts the supplied value to
uppercase before the code is created.

The function populates the same defaults which are set when a product is created using the Infusion
Interface:

GST Rates
Pricing Method
Allow Discounts
Default GL IDs
Use Discount Matrix
Customer Item Type
Searchplus Field
Product Creation Date

createProduct(“PCODE123”,”Product Description”)

The function returns 1 on success and 0 on failure. Check the lastErrorMessage value for the reason of

a failure.

All other fields of a product should be populated using the Replace command after placing a record lock
on the newly created product shell.

ADDPRODUCTIMAGE – Adds an Image to a Product

This function will only work with version 8.200 or Higher.

Ensure you have copied the Image to be added to the Product Images Folder (Set in System Defaults)
before calling this function. If the image does not exist then the function will return 0 (Failure).

A combination of the Product Code and the Image Filename is used to identify the image in the database.

Four parameters are passed to the function:

 Product Code
 Image Display Description
 Image Filename
 Is this Image the Default Image (Boolean)

If the Image is already associated with the Product the function will return 0
If the Image does not exist in the Product Images folder the function will return 0

Once the Default Product Image flag has been applied as supplied, the function checks there is still a
Default Image associated with the product. If no image is set as default then the first image added to the
product will be set as the Default Image.

addProductImage(“CODE123”,”My Product Image”,”ImageName.jpg”,.t.)
addProductImage(“CODE123”,”My Product Image”,”ImageName.jpg”,.f.)

UPDATEPRODUCTIMAGE – Updates the details of an existing Image associated with a Product

This function will only work with version 8.200 or Higher.

Ensure you have copied the Image to be added to the Product Images Folder (Set in System Defaults)
before calling this function. If the image does not exist then the function will return 0 (Failure).

A combination of the Product Code and the Image Filename is used to identify the image in the database.

The function will set the Description and Default Status of the Image.

Four parameters are passed to the function:

 Product Code
 Image Display Description
 Image Filename
 Is this Image the Default Image (Boolean)

If the Image is NOT already associated with the Product the function will return 0
If the Image does not exist in the Product Images folder the function will return 0

Once the Default Product Image flag has been applied as supplied, the function checks there is still a
Default Image associated with the product. If no image is set as default then the first image added to the
product will be set as the Default Image.

updateProductImage(“CODE123”,”My Product Image”,”ImageName.jpg”,.t.)
updateProductImage(“CODE123”,”My Product Image”,”ImageName.jpg”,.f.)

DELETEPRODUCTIMAGE – Deletes an existing Image associated with a Product

This function will only work with version 8.200 or Higher.

This function only deletes the association from the Product. It DOES NOT physically delete the Image
from the computer.

A combination of the Product Code and Image File Name are used to locate the record in the database.

Two parameters are passed to the function:

 Product Code
 Image Filename

If the Image is NOT already associated with the Product the function will return 0

Once the Image has been removed, the default Image is checked to ensure that there is still one set.
(assuming there is still an Image associated). The first image in the list will be used as the Default Image
if the Default Image has been deleted.

deleteProductImage(“CODE123”,”ImageName.jpg”)

CREATECONTACT – Creates a Contact for a Customer or Supplier

A single parameter is passed to the function to indicate if a Customer or Supplier Contact is to be created.
Pass “S” for a Supplier or “C” for a Customer. Any value other than “S” will result in a Customer Contact
being created.

The parameters for the Contact are detailed in the Parameters Explained section of this document.

createContact(“C”)
createContact(“S”)

UPDATECONTACT – Updates a field of a Contact for a Customer or Supplier

This function allows you to update a given field of a Contact.

Set the value in the pXxxxxx parameter of the Gateway Object and then call this function with the
following three parameters:

 Link Number of the Contact
 Type of Contact “C” – Customer or “S” – Supplier
 Field to update

A list of the fields and their parameters is detailed in the Parameters Explained section of this document.

updateContact(123,”C”,”NAME”)
updateContact(456,”S”,”EMAIL”)

DELETECONTACT – Deletes a Contact for a Customer or Supplier

This function will delete a Contact from a Customer or a Supplier. If the contact has been setup as an
Email Link, then this link will also be deleted.

Two parameters are passed to this function:

The Link Number of the Contact
The Type of Contact – “C” Customer, or “S” Supplier

deleteContact(123,”C”)
deleteContact(456,”S”)

CREATEJOB(nCustomer, cJobID, cOpenedBy, cJobType) – Creates a new Product Code

Four parameters are passed to this function.

Customer Account the Job is for
Job ID to Create (use NextJob to get the value from INFDATA. Remember to convert the Int to a String)
Staff ID of the person creating the Job
Job Type (*STD* is the Standard Job) - If this is not supplied, *STD* is used.

The function populates the following values:

Price Level
Sort Key of the Customer
Customer Account
Job ID
Name
Address Details
Site Address Details
Phone Numbers
Job Type
Opened By

createJob(1000, nNextJob.ToString(), "STAFF", "*STD*")

The function returns a positive number on success and 0 on failure. Check the lastErrorMessage value
for the reason of a failure.

The number returned is the Job Link Number.

All other fields of a product should be populated using the Replace command after placing a record lock
on the newly created job shell.

OPENCUSTRATECALCS (lOpen)

This function is used to open (or close) the files required for the Customer Rate Calculation Function.

The parameter passed as True will OPEN the tables. When passed as False will CLOSE the tables.:

openCustRateCalcs(.t.)
openCustRateCalcs(.f.)

GETCUSTRATE

Calculates the price of a Product based on the Customer, Qty and Date
Uses the Infusion Pricing Logic
Currently only available to Infusion Developers.

Requires the parameters pAccount, pPCode, pDate and pQty to be set

Result values set to pRate and pDiscount

Return value of 1 indicates success
Return value of 0 indicates an error occurred.

Transaction Functions

CLOSEGLJNLFILES
Closes the files required for posting Financial Journals

closegljnlfiles()

OPENGLJNLFILES
Opens the required files for posting Financial Journals

opengljnlfiles()

POSTGLTXN - Creates a Financial Journal.
A full detail of the required parameters for this function can be found in the Transaction Requirements
section of this document.

Note: You must call OPENGLJNLFILES before posting transactions, this only need be done once, and
the files will remain open until you issue the CLOSEGLJNLFILES command.

postgltxn()

POSTJOBTXN - Creates a Job Transactions based on the properties set.
A full detail of the required parameters for this function can be found in the Transaction Requirements
section of this document.

postjobtxn()

CREATEINVOICE – Creates a new Invoice Header Record.

Note: A return value greater than zero indicates success. This number is the LINK number of the invoice.
Use this value as the pLink parameter when calling INVOICEADDLINE or TOTALINVOICE. A value of
zero indicates an error. The meaning of the error code is returned in the LastErrorMessage property.

A full detail of the required parameters for this function can be found in the Transaction Requirements
section of this document.

After you have created an invoice header you can add lines to it using INVOICEADDLINE. Also
remember to re total the invoice using the TOTALINVOICE function.

createinvoice()

INVOICEADDLINE – Adds a line to the specified invoice.

A full detail of the required parameters for this function can be found in the Transaction Requirements
section of this document.

You must call the TOTALINVOICE function after you have added all the lines you want to a given invoice.

invoiceaddline()

INVOICEADDLINE2 – Adds a line to the specified invoice and checks available stock quantity.

A full detail of the required parameters for this function can be found in the Transaction Requirements
section of this document. (See INVOICEADDLINE)

InvoiceAddLine2 DOES NOT support adding lines for GL ID's (Use InvoiceAddLine instead)

Supply the total required quantity in the pQTY parameter.
The function will check the available stock holding and automatically populate the pBACK parameter.

NOTE: This function only populates the Pending Invoices column for Backorders. It DOES NOT process
the pending invoice to create the actual backorder.

You must call the TOTALINVOICE function after you have added all the lines you want to a given invoice.

Invoiceaddline2()

INVOICEDELETELINE – Deletes a line to the specified invoice.

This method deletes a line from a PENDING Customer Invoice.

You must open the INVLN table and locate to the record you wish to delete. Use the OPEN and
LOCATE commands to do this. Afterwards you are also responsible for closing the INVLN table. Use the
CLOSE command for this.

Pass the Alias of the INVLN table you have opened to the function.

This function deletes the line from INVLN and also updates the Allocated quantity of PRODBALS and
PRODUCTS when required.

invoicedeleteline(‘a_invln’)

TOTALINVOICE – Retotals the specified Invoice

A full detail of the required parameters for this function can be found in the Transaction Requirements
section of this document.

This function should be called after all lines are added to an invoice.

totalinvoice()

UPDATEINVHEADER – Updates a given field of an existing pending invoice.

There is a list of the valid values for the parameter and the matching variables which should be set for
each parameter in the Transaction Requirements section of this document.

Updates can only be performed on PENDING invoices.

updateinvheader(“NAME”)
updateinvheader(“INVNUMBER”)

CUSTOMERINVOICE_POST – Posts a pending customer invoice.

If the invoice contains the any of the following, it cannot be posted using the gateway.

 Trade In
 Back Orders
 Deferred Payment
 Recurring Invoice
 Recurring Job
 Deposit Paid

Pass the link number of the invoice to be posted as a parameter to the function.

The function returns a value of 1 if the invoice was successfully posted. It returns 0 if the invoice was not
posted.

The lastError and lastErrorMessage parameters contain details of why an invoice was not posted.

 10100 – Invoice Link Not Supplied
 10101 – Invoice Link Not Found
 10102 – Invoice Already Posted
 10103 – Invoice is flagged as on hold
 10104 – The invoice date is empty / earlier than your lockout or system start date.
 10105 – The invoice date is after your lockout date.
 10106 – Customer requires an order number on all invoices.
 10107 – Customer Account not found.
 10108 – Sales Rep Required.
 10109 – Customer is on Stop Credit.
 10110 – Customer is Inactive.
 10111 – Customer is over their Credit Limit.
 10112 – Invoice contains a deferred payment.
 10113 – Invoice is flagged as recurring.
 10114 – Invoice is linked to a recurring Job.
 10115 – Invoice is linked to a Job with a Deposit.
 10116 – Invoice is in use by another user.
 10117 – Customer is being accessed by another user.
 10118 – Not all serial numbers have been entered.
 10119 – Invoice has GL code(s) with a zero rate.
 10120 – Invoice contains a Trade In.
 10121 – Invoice contains Back Ordered items.
 10999 – An unknown invoice posting error occurred.

customerInvoice_post(123456)

CREATECUSTINVOICEPDF – Creates a PDF (Original) of a Customer Invoice with a specified
filename and location.

This method uses the XFRX functions to create a PDF of an Invoice (Pending or Posted).
The setPDFPath and setRootPath methods of the Gateway should be called prior to using this method.
Infusion version 8.410 or higher is required.

The output filename (including path), Invoice Layout filename and Invoice Link Number are passed as
parameters.

createCustInvoicePDF(nInvLink,cInvLayoutFile,cOutputFolderAndFilename)

createCustInvoicePDF(45678,’INV01’,‘c:\output\Invoice1234.pdf’)

CREATESUPPINVOICEPDF – Creates a PDF (Original) of a Supplier Invoice with a specified
filename and location.

This method uses the XFRX functions to create a PDF of an Invoice (Pending or Posted).
The setPDFPath and setRootPath methods of the Gateway should be called prior to using this method.
Infusion version 8.410 or higher is required.

The Invoice can be for a Supplier Invoice (without products) or a Purchase Order Invoice.
The layout file used in the method call should be able to output the type of Invoice being requested.

The output filename (including path), Invoice Layout filename and Invoice Link Number are passed as
parameters.

createSuppInvoicePDF(nInvLink,cInvLayoutFile,cOutputFolderAndFilename)

createSuppInvoicePDF(45678,’SUPPINV’,‘c:\output\Invoice1234.pdf’)

CUSTOMERBACKORDER_CREATE – Creates a Backorder header

This function along with CustomerBackOrder_AddLine are used to add a Customer Backorder as if it had
been created by posting a Customer Invoice with quantities in the Backorder column.

A return value greater than zero indicates success. This number is the LINK number of the backorder.
Use this value as the pLink parameter when calling CUSTOMERBACKORDER_ADDLINE. A value of
zero indicates an error. The meaning of the error code is returned in the LastErrorMessage property.

A full detail of the required parameters for this function can be found in the Transaction Requirements
section of this document.

*** Note There is no totaling function requited for Backorders, as there is in Invoices ***

customerBackorder_Create()

CUSTOMERBACKORDER_ADDLINE – Adds a line to a Customer Backorder

This function along with CustomerBackOrder_Create are used to add a Customer Backorder as if it had
been created by posting a Customer Invoice with quantities in the Backorder column.

A return value of 1 indicates success. Any other value indicates an error. The meaning of the error
code is returned in the LastErrorMessage property.

A full detail of the required parameters for this function can be found in the Transaction Requirements
section of this document.

customerBackorder_AddLine()

CREATEQUOTE – Creates a new Customer Quote Header Record.

Note: A return value greater than zero indicates success. This number is the LINK number of the quote.
Use this value as the pLink parameter when calling QUOTEADDLINE or TOTALQUOTE. A value of zero
indicates an error. The meaning of the error code is returned in the LastErrorMessage property.

A full detail of the required parameters for this function can be found in the Transaction Requirements
section of this document.

After you have created a quote header you can add lines to it using QUOTEADDLINE. Also remember
to re total the quote using the TOTALQUOTE function.

createquote()

QUOTEADDLINE – Adds a line to the specified quote.

A full detail of the required parameters for this function can be found in the Transaction Requirements
section of this document.

You must call the TOTALQUOTE function after you have added all the lines you want to a given quote.

quoteaddline()

QUOTEDELETELINE – Deletes a line to the specified quote.

This method deletes a line from a PENDING Customer Quote.

You must open the QUOTELN table and locate to the record you wish to delete. Use the OPEN and
LOCATE commands to do this. Afterwards you are also responsible for closing the QUOTELN table.
Use the CLOSE command for this.

Pass the Alias of the QUOTELN table you have opened to the function.

This function deletes the line from QUOTELN

quotedeleteline(‘a_quoteln’)

TOTALQUOTE– Retotals the specified Quote

A full detail of the required parameters for this function can be found in the Transaction Requirements
section of this document.

This function should be called after all lines are added to a quote.

totalquote()

CustomerPayment_StartTransaction – Initiates a Customer Payment Transaction

This function initiates a Customer Payment Transaction. It will return a value of 1 if the Payment has
commenced.

It validates that the Customer account exists and that you have provided the required parameters.

Parameters:

ldDate – Date of the Payment (This is passed as a string in the format DD/MM/YYYY)

lnAccount – Customer Account Number as Integer

lnPaymentMethodID – This is the Type value from BANKMETH.DBF This is an Integer value

lcBankGLID - The GLID for the Bank Account the payment is for. This is a String Value

lcRefRef – A Reference for the Payment. This is a String Value. Pass an empty string if not required

lcRefBank – The Bank Detail for a Cheque Payment. This is a String Value. Pass an empty string if not
required

lcRefBranch - The Branch Detail for a Cheque Payment. This is a String Value. Pass an empty string if
not required

Example:

customerPayment_StartTransaction(“31/08/2014”,1000,1002,”9170”,”P00001”,””,””)

CustomerPayment_AddLine – Adds an Invoice/Credit Note etc to the Payment

This function adds a component to a Customer Payment that is in Progress.

First call the CustomerPayment_StartTransaction or this function will return 0 (Failure)

No validation is made on the Audit number nor amounts you enter as parameters at this level. Validation
is made when the CustomerPayment_FinishTransaction function is called.

If the details are successfully stored, the function will return a value of 1

Parameters:

lnAudit – The Audit Number of the Item being Paid. If this is an unallocated payment, pass a zero here.
– Integer

lnAmountPaid – The amount being paid on this line. (excluding Discount). – Double

lnDiscountAmount – The dollar value of discount being applied on this line. – Double

Example:

customerPayment_AddLine(12345,500.00,25.00)

CustomerPayment_FinishTransaction – Completes a Customer Transaction

This function finalizes a customer payment transaction. This should be called after the
customerPayment_StartTransaction and all associated customerPayment_AddLine calls have been
completed.

This function will return 1 on success.

When the function process, the lines added are validated.

 The audit number is valid and belongs to the customer the payment is for. If this check returns

false, then this portion of the payment is recorded as unallocated.

 The balance is not being over paid (by amount and or discount). Any overpayment will be
moved to unallocated.

 The date of the payment is not before the date of the line being paid. If this check returns false,

then this portion of the payment is recorded as unallocated.

There are no parameters to pass to this function.

Example:

customerPayment_FinishTransaction()

GETCUSTOMERATB - Calculates a Customer ATB Dataset as at a specified date.

This function prepares a JSON dataset containing the Customer Aged Trial Balance data.

The function accepts 6 parameters

tdDate Date to caclulate balances at.
tnFromAcc From Account
tnToAcc To Account (if 0 is passed, then the system maximum of 9999999999 is used)
tcFromGrp From Group
tcToGrp To Group (if an empty string is passed then the system maximum of
 ZZZZZZZZZZ is used)
tcType Customer Type (Only a single type can be used, pass an empty string to
 include ALL Types

This function may take a while to run and does not return any notification to the calling application until it
is complete.

Example:

getCustomerATB(date(2021,4,20),0,9999999999,"","ZZZZZZZZZZ","")

The return value is a formatted JSon string:

[{
 "account": 1000,

 "balance": 1150.00,
 "future": 0.00,
 "current": 595.75,
 "30": 0.00,
 "60": 525.99,
 "90": 28.26
},
{
 "account": 1010,
 "balance": 50.00,
 "future": 0.00,
 "current": 0.00,
 "30": 45.00,
 "60": 5.00,
 "90": 0.00
}]

VARRESET - Reset All the Transaction Properties to their default values.
Note: This function should be called before each Transaction is begun.

varreset()

POSTGSTTXN – Creates a GSTDET record for the GST Report

A full detail of the required parameters for this function can be found in the Transaction Requirements
section of this document.

postgsttxn()

POSTBANKRECTXN – Creates a BANKREC record for the Bank Reconciliation

A full detail of the required parameters for this function can be found in the Transaction Requirements
section of this document.

postbankrectxn()

GETGSTTYPE - Gets the GSTTYPE value for use with the POSTGSTTXN function

A full detail of the required parameters for this function can be found in the Transaction Requirements
section of this document.

The return value (1-6) is the value that should be passed to the PGSTTYPE parameter of the
POSTGSTTXN function.

getgsttype()

POSTPRODTXN – Creates a Product Movement Transaction

A full detail of the required parameters for this function can be found in the Transaction Requirements
section of this document.

postprodtxn()

SUPP_CREATEINVOICE – Creates a new Supplier Invoice Header Record. (Non Product)

Note: A return value greater than zero indicates success. This number is the LINK number of the invoice.
Use this value as the pLink parameter when calling SUPP_INVOICEADDLINE or
SUPP_INVOICETOTAL. A value of zero indicates an error. The meaning of the error code is returned in
the LastErrorMessage property.

A full detail of the required parameters for this function can be found in the Parameters Explained section
of this document.

After you have created an invoice header you can add lines to it using SUPP_INVOICEADDLINE. Also
remember to re total the invoice using the SUPP_INVOICETOTAL function.

supp_createinvoice()

SUPP_INVOICEADDLINE – Adds a line to the specified Supplier Invoice.

A full detail of the required parameters for this function can be found in the Parameters Explained section
of this document.

You must call the SUPP_INVOICETOTAL function after you have added all the lines you want to a given
invoice.

supp_invoiceaddline()

SUPP_INVOICETOTAL – Retotals the specified Supplier Invoice

A full detail of the required parameters for this function can be found in the Parameters Explained section
of this document.

This function should be called after all lines are added to an invoice.

supp_invoicetotal()

SUPP_UPDATEINVHEADER – Updates a given field of an existing Pending Supplier Invoice.

There is a list of the valid values for the parameter and the matching variables which should be set for
each parameter in the Parameters Explained section of this document.

Updates can only be performed on PENDING invoices.

supp_updateinvheader(“NAME”)
supp_updateinvheader(“INVNUMBER”)

CreatePurchaseOrder – Creates a new Supplier Purchase Order Record.

Note: A return value greater than zero indicates success. This number is the LINK number of the invoice.
Use this value as the pLink parameter when calling PURCHASEORDERADDLINE or
TOTALPURCHASEORDER. A value of zero indicates an error. The meaning of the error code is
returned in the LastErrorMessage property.

The Purchase Order is created in a Saved Status.

A full detail of the required parameters for this function can be found in the Parameters Explained section
of this document.

After you have created a Purchase Order Header you can add lines to it using
PURCHASEORDERADDLINE . Also remember to re total the invoice using the
TOTALPURCHASEORDER function.

createPurchaseOrder ()

PurchaseOrderAddLine – Adds a line to the specified Purchase Order.

A full detail of the required parameters for this function can be found in the Parameters Explained section
of this document.

You can only add lines to a Purchase Order which is in a Saved Status. Once it has been Ordered (via
the Infusion Interface) you cannot add lines to it using the Gateway.

You must call the SUPP_ TOTALPURCHASEORDER function after you have added all the lines you
want to a given Purchase Order.

purchaseOrderAddLine ()

TotalPurchaseOrder – Retotals the specified Purchase Order

A full detail of the required parameters for this function can be found in the Parameters Explained section
of this document.

This function should be called after all lines are added to a Purchase Order.

totalPurchaseOrder ()

OrderPurchaseOrder – Processes a Saved Purchase Order into an Ordered Purchase Order

Note: This method DOES NOT produce a Printed or Emailed Purchase Order Document

The parameter pPOOrdNum must be populated with the Order Number to be processed.
The order must be Saved.
Does NOT support Job Management Orders set to Deliver to Job Sites.

orderPurchaseOrder()

UpdatePOHeader – Updates a given field of an existing pending Purchase Order.

There is a list of the valid values for the parameter and the matching variables which should be set for
each parameter in the Parameters Explained section of this document.

Updates can only be performed on PENDING Purchase Orders (Ordered or Saved).

updatepoheader(“NAME”)
updatepoheader(“DATE”)

Loyalty System Functions

GetLoyaltyBalance – Gets the CURRENT Loyalty Account Balance for a Customer (External
Loyalty System)

The returned value is a numeric value. It is the balance of the Account.

If the returned value is -1 please enquire the LastError value. If it is any value other than 0 then an error
occurred. In this case please check the LastErrorMessage property. If the LastError value is 0, then -1
is the Loyalty Account Balance.

getLoyaltyBalance(123)

GetExpiringLoyaltyBalance – Gets the Expiring Loyalty Account Balances for a Customer
(External Loyalty System)

The returned value is a numeric value. Either 1 (Success) or -1 (Error/Failure)

If the return value is 1, then enquire the rExpiringRewards1 (Current) Property and rExpiringRewards2
(Next Month) Property to obtain the values.

getExpiringLoyaltyBalance(123)

GetPendingLoyaltyBalance – Gets the Pending Loyalty Account Balances for a Customer
(External Loyalty System)

The returned value is a numeric value. It is the pending balance of the Account.

If the returned value is -1 please enquire the LastError value. If it is any value other than 0 then an error
occurred. In this case please check the LastErrorMessage property. If the LastError value is 0, then -1
is the Pending Balance.

getPendingLoyaltyBalance(123)

GetLoyaltyTransactionList – Creates a cursor containing the Loyalty Transactions for a given
Customer and Date Range. (External Loyalty System)

There are 3 parameters require for this function.

 Account Number – Integer
 From Date – String in the format dd/mm/yyyy
 To Date – String in the format dd/mm/yyyy

The returned value is a numeric value. It is the number of records in the cursor. If the value is -1 then
an error occurred. If the value is 0 then there are no matching transactions.

The resultant cursor is named c_LoyList and contains the following fields:

 Audit
 Date
 PostDate

 TrType
 Account
 Trans
 Ref
 Credit
 Debit

This cursor can be controlled using the standard table functions.

 Select(‘c_LoyList’)
 GoTop()
 Get(‘Account’)
 Skip(‘c_LoyList’)

getLoyaltyTransactionList(123,”01/04/2015”,”20/04/2015”)

PostLoyaltyTransaction – Creates a Loyalty Transactions for a given Customer. (External Loyalty
System)

There are 6 parameters require for this function.

 Transaction Date – String in the format dd/mm/yyyy
 Account Number – Integer
 Transaction Description – String
 Transaction Reference – String
 Amount Including GST – Number
 GST Amount – Number

The returned value is a numeric value. Either 1 (Success) or -1 (Error/Failure)

This function posts GL Journals to the Expense GL ID and Holding GL ID configured within Infusion as
well as the required transactions to the Loyalty System.

postLoyaltyTransaction(“20/04/2015”,123,”Extra Rewards”,”Extra”,11.50,1.50)

Emailing Functions

EMAILCUSTOMERINVOICE – Creates a PDF for a specified Customer Invoice and adds it to the
Pending Email queue.

This Function is available in the IBSEmailCustInvoice.DLL. You need logon and setup that DLL
in the same as the main DLL.

In order to use this function additional files need to be stored in a folder accessible to your application.
These files are:

 Custinv.frt
 Custinv.frx
 Gdiplus.dll
 Hndlib.dll
 Xfrx.fxp
 Xfrxlib.fll
 Zlib.dll

The location of this folder should be supplied to the DLL using the method setPDFPath

The Customer Invoice can be pending or posted. This function does not use the Infusion Email Links.
You need to provide the email address you wish to send to in the function call.

There are six parameters required in this function call:

nDocumentLink – This numeric value is the LINK number of the Invoice from the INVIDX record
cEmailAddress – The email address of the recipient
cEmailName – The display name of the recipient
cUserID – A valid Infusion UserID which will be used as the documents sender.
cSubject – Subject Line
cBody – Email Body

The function returns an audit number if successful. It returns 0 on failure. Also if the gateway is not
logged on to the data file -1 is returned.

The invoice layout used is contained in the file CUSTINV.FRX/FRT and should be placed in the folder
supplied in the SETPDFDATA call.

CUSTINV is the same as the standard Infusion Customer Invoice Layouts with the exception that the
following code is placed in the BEFOREOPENTABLES method. It replaces the line DO DEFENV which is in
the standard layout.

Set Status Bar Off
Set Resource Off
Set Century On
Set Decimals To 2 && was 4
Set Memowidth To 1000
Set Date BRITISH
Set Reprocess To 1
Set Excl Off
Set Deleted On
Set Talk Off
Set Echo Off
Set Bell Off
Set Null Off
Set Safety Off
Set ENGINEBEHAVIOR 70
SET COLLATE TO "MACHINE"
Clear Macros

Set TABLEVALIDATE To 13
Set Notify Off

Example:
emailCustomerInvoice(12345,email@company.co.nz,”Receiver Name”,”Subject Info”,”Body Info”)

EMAILSUPPLIERINVOICE – Creates a PDF for a specified Supplier Invoice and adds it to the
Pending Email queue.

This Function is available in the IBSEmailSuppInvoice.DLL. You need logon and setup that DLL
in the same as the main DLL.

In order to use this function additional files need to be stored in a folder accessible to your application.
These files are:

 Suppinv.frt
 Suppinv.frx
 Gdiplus.dll
 Hndlib.dll
 Xfrx.fxp
 Xfrxlib.fll
 Zlib.dll

The location of this folder should be supplied to the DLL using the method setPDFPath

Note: Since Infusion does not support Emailing of Supplier Invoices, it is treated as a Purchase Order for
emailing purposes.

The Supplier Invoice can be pending or posted. This function does not use the Infusion Email Links.
You need to provide the email address you wish to send to in the function call.

There are six parameters required in this function call:
nDocumentLink – This numeric value is the LINK number of the Invoice from the PORDIDX record
cEmailAddress – The email address of the recipient
cEmailName – The display name of the recipient
cUserID – A valid Infusion UserID which will be used as the documents sender.
cSubject – Subject Line
cBody – Email Body

The function returns an audit number if successful. It returns 0 on failure. Also if the gateway is not
logged on to the data file -1 is returned.

The invoice layout used is contained in the file SUPPINV.FRX/FRT and should be placed in the
folder supplied in the SETPDFDATA call.

SUPPINV is the same as the standard Infusion version with the exception that the following code
is placed in the BEFOREOPENTABLES method. It replaces the line DO DEFENV which is in the
standard layout.

Set Status Bar Off
Set Resource Off
Set Century On
Set Decimals To 2 && was 4
Set Memowidth To 1000
Set Date BRITISH
Set Reprocess To 1
Set Excl Off
Set Deleted On
Set Talk Off
Set Notify Off
Set Echo Off
Set Bell Off
Set Null Off

Set Safety Off
Set ENGINEBEHAVIOR 70
SET COLLATE TO "MACHINE"
Clear Macros
Set TABLEVALIDATE To 13

Example:
emailSupplierInvoice(12345,email@company.co.nz,”Receiver Name”,”Subject Info”,”Body Info”)

SENDEMAIL – Sends a single email from the Pending Email Queue

Use this function to send an email which exists in the Infusion Pending Email Queue.

Three parameters are required:

nEmailAudit – Audit number of the entry in Emails.DBF
cUserID – A valid Infusion UserID
cDocType – Selected from the following list. - An empty string can also be provided in place of this
parameter

 PORD – Purchase Order or Supplier Invoice
 CRREMIT – Supplier Remittance
 STATE – Customer Statement
 INV – Customer Invoice
 DRREC – Customer Receipt
 QUOTE – Customer Quote
 PACK – Customer Packing Slip

The senders email address is obtained by the following hierarchy

 Email Address from the Staff ID of the Document Creator (If flagged to do this within Infusion)
 Email Address from the document type under Email Defaults in Infusion.
 Email Address from Email Defaults – Default Email Address

sendEmail(12345,”STAFF”,””)
sendEmail(12345,”STAFF”,”INV”)
sendEmail(12345,”STAFF”,”PORD”)

Contact Management Functions

clearCMLogParameters – Clears/Resets ALL pCMxxxxxx Parameters on the Gateway Object

This function should be called to reset all the Contact Management Parameters of the Gateway Object
to their default values.

It is advisable to call this function before using any of the following functions:

 createCMLogEntry
 getCMLogEntryByID
 updateCMLogEntryByID

clearCMLogParameters()

createCMLogEntry

This function will add an entry to the Contact Management System.

First Populate the Gateway Objects pCM Parameters and then call this function. No parameters are
required.

createCMLogEntry()

The function will return the Log ID on success, 0 or -1 on failure. Check the LastErrorMessage
parameter for the reason for a failure.

At the very least you must supply:

 pCMModule C – Customers, S – Suppliers, Z – Staff
 pCMAccountID Not Applicable in the case of Staff Entry
 pCMStaffCode Not Applicable in the case of Customer and Supplier Entries
 pCMDateTime Date and Time of Entry
 pCMCreatedByID Staff ID who created the Entry
 pCMTypeID Contact Management Type ID from getCMTypes function

TypeIDs (CM Type,Group and Follow Up) are validated during creation of the Entry. If they are invalid
then they are ignored (Remember CM Type is a required parameter)

getCMTypes – Creates a temporary table (cursor) which contains a list of valid Contact Management
Contact Types.

Pass a single parameter indicating the Module you want the valid types for.

Valid Values are:

 C – Customers
 S – Suppliers
 Z – Staff
 Or Blank (Empty String) for ALL values (C,S and Z)

This function will return -1 if there is an error or an integer representing the number of records in the
temporary table. This value may be zero.

The temporary table has the alias c_CMTypes. It contains 5 Fields :

 Code
 Description
 Customer - Logical Value identifying this value as valid for Customers
 Supplier - Logical Value identifying this value as valid for Suppliers
 Staff - Logical Value identifying this value as valid for Staff

nRecCount = getCMTypes()

You can iterate through the table using code similar to:

listBox1.Items.Clear();
 Int32 r = ibsGW.Select("c_CMTypes");
 do
 {
 listBox1.Items.Add(ibsGW.Get("Desc"));
 ibsGW.Skip("c_cmTypes");
 } while (!ibsGW.isEOF());

getCMGroups– Creates a temporary table (cursor) which contains a list of valid Contact Management
Groups.

Pass a single parameter indicating the Module you want the valid groups for.

Valid Values are:

 C – Customers
 S – Suppliers
 Z – Staff
 Or Blank (Empty String) for ALL values (C,S and Z)

This function will return -1 if there is an error or an integer representing the number of records in the
temporary table. This value may be zero.

The temporary table has the alias c_CMGroups. It contains 5 Fields :

 Code

 Description
 Customer - Logical Value identifying this value as valid for Customers
 Supplier - Logical Value identifying this value as valid for Suppliers
 Staff - Logical Value identifying this value as valid for Staff

nRecCount = getCMGroups()

You can iterate through the table using code similar to:

listBox1.Items.Clear();
 Int32 r = ibsGW.Select("c_CMGroups");
 do
 {
 listBox1.Items.Add(ibsGW.Get("Desc"));
 ibsGW.Skip("c_cmGroups");
 } while (!ibsGW.isEOF());

getCMFUTypes– Creates a temporary table (cursor) which contains a list of valid Contact Management
Follow Up Types

Pass a single parameter indicating the Module you want the valid Follow Up Types for.

Valid Values are:

 C – Customers
 S – Suppliers
 Z – Staff
 Or Blank (Empty String) for ALL values (C,S and Z)

This function will return -1 if there is an error or an integer representing the number of records in the
temporary table. This value may be zero.

The temporary table has the alias c_CMFUTypes. It contains 5 Fields :

 Code
 Description
 Customer - Logical Value identifying this value as valid for Customers
 Supplier - Logical Value identifying this value as valid for Suppliers
 Staff - Logical Value identifying this value as valid for Staff

nRecCount = getCMFUTypes()

You can iterate through the table using code similar to:

listBox1.Items.Clear();
 Int32 r = ibsGW.Select("c_CMFUTypes");
 do
 {

 listBox1.Items.Add(ibsGW.Get("Desc"));
 ibsGW.Skip("c_CMFUTypes");
 } while (!ibsGW.isEOF());

getCMLogEntryList– Creates a temporary table (cursor) which contains a list of Contact Management
Log Entries

7 Parameters are accepted for this function, depending on the type of log entry you require some values
can be blank or 0

 nFromAccount
 nToAccount
 cFromStaff
 cToStaff
 dFromDate
 dToDate
 cCMModule

The cCMModule parameter dictates which type of log entries will be returned and thus which of these
parameters must be set.

Valid Values are:

 C – Customers
 S – Suppliers
 Z – Staff
 Y – Entered By (All Modules)
 X – Assigned To / Follow Up (All Modules)

Customers – Requires nFromAccount, nToAccount, dFromDate, dToDate and cCMModule
Suppliers – Requires nFromAccount, nToAccount, dFromDate, dToDate and cCMModule
Staff – Requires cFromStaff,cnToStaff, dFromDate, dToDate and cCMModule
Entered By – Requires cFromStaff, cToStaff, dFromDate, dToDate and cCMModule
Assigned To – Requires cFromStaff, cToStaff, dFromDate, dToDate and cCMModule

When cFromStaff and cToStaff are not required set them to an empty string.
When nFromAccount and nToAccount are not required set them to 0
This function will return -1 if there is an error or an integer representing the number of records in the
temporary table. This value may be zero.

The following command will return a list of entries for the Customer Account 1 between 1/1/2015 and
31/3/2015
Note: Dates must be passed as valid dates in your programming language. (Not Strings)

nRecCount = getCMLogEntryList(1,1,””,””,01/01/2015,31/03/2015,”C”)

The resultant temporary table has the alias c_CMLogEntryList. It contains only 2 Fields :

 ID
 Module

You can iterate through the table using and retrieve the logs with code similar to:

 ibsGW.Select("c_CMLogEntryList");
 Int32 id = 0;
 do
 {
 id = ibsGW.get(“c_CMLogEntryList.id”)

 ibsGW.getCMLogEntryByID(id);
 .
 .
 .
 .

 ibsGW.Select("c_CMLogEntryList");
 ibsGW.Skip("c_CMLogEntryList");
 } while (!ibsGW.isEOF());

getCMLogEntryByID – Populates the Gateway Object pCM parameters with the values from a given
log entry.

A single integer parameter is required. This is the log entry ID returned in the getCMLogEntryList
function.

You should call the clearCMParameters function before calling this function.

The return value will be the same Log ID if the parameters have been populated. 0 indicates there was
an error.

getCMLogEntryByID(100)

updateCMLogEntryByID – Updates an existing Log Entry’s Field

Two parameters are required for this function:

 nID – Log Entry ID
 cVarCode – Key Value to Update (From the list below)

Populate the relevant pCM parameter of the Gateway Object and then call this function. You can set
all the parameters first and then make sequential calls to update each field.

ibsGW.pCMAccountID = 100;
ibsGW.pCMCreatedByStaffID = “STAFF”;
ibsGW.updateCMLogEntryByID(1234,”ACCOUNTID”);
ibsGW.updateCMLogEntryByID(1234,”CREATEDBY”);

The valid cVarCode values and their matching pCM Parameters are:

Parameter cVarCode Data Value

pCMAccountID ACCOUNTID Numeric Account Number
pCMStaffCode STAFFCODE Character Staff ID from STAFF.DBF
pCMDateTime DATETIME DateTime representing Date and Time of Entry
pCMCreatedByStaffID CREATEDBY Character Staff ID from STAFF.DBF who created
the Entry
pCMContactID CONTACTID Numeric ID of the Contact from SUPPCONT or
CUSTCONT
pCMStatus STATUS Either “Completed” or “Active” are acceptable
values
pCMTypeID TYPEID Character ID value from getCMTypes function
pCMTitle TITLE String
pCMNotes NOTES String
pCMFollowUpID FUID Character ID value from getCMFUTypes
function
pCMFollowUpDate FUDATE Date
pCMFollowUpStaffID FUSTAFFID Character Staff ID from STAFF.DBF for the
Follow Up
pCMPriority PRIORITY 1 (Urgent), 2 (High), 3 (Normal), 4 (Low), 5
(None)
pCMGroupID GROUPID Character ID value from getCMGroups function
pCMReference REFERENCE Character

deleteCMLogEntry – Deletes a Contact Management Log Entry

A single parameter representing the ID of the Log Entry to delete is required.

deleteCMLogEntry(100)

The return value will be 1 if the deletion succeeded.

CREATECONTACT – Parameters Explained

The following parameters are used in the procedure CREATECONTACT. Required Parameters are
underlined.

 pAccount

Customer or Supplier Account Number the Contact is associated with
Data type is Numeric

 pAdd1,2,3,4

Contact Address Lines (1 – 4)
Data type is AlphaNumeric

 pEmail

Contact Email Address
Data type is AlphaNumeric

 pFax

Contact Phone Number
Data type is AlphaNumeric

 pFirstName

Contact First Name
Data type is AlphaNumeric

 pMobile

Contact Mobile Phone Number
Data type is AlphaNumeric

 pPhone

Contact Phone Number
Data type is AlphaNumeric

 pPosi

Contact Position
Data type is AlphaNumeric

 pPostcode

Contact Address Postcode
Data type is AlphaNumeric

 pSurname

Contact Surname
Data type is AlphaNumeric

 pTitle

Contact Title. (Mr, Mrs, Ms, Miss, Mstr, Dr, Rev, Sir, Dame)
Data type is AlphaNumeric

 pVOIP

Contact VOIP Number
Data type is AlphaNumeric

UPDATECONTACT - Parameters Explained

The following parameters are used in the procedure UPDATECONTACT

This list contains the parameter to pass and the matching variable which should be populated with the
value you wish to replace.

Parameter Variable to be populated. Field Replaced

ADD1 pAdd1 Address Line 1
ADD2 pAdd2 Address Line 2
ADD3 pAdd3 Address Line 3
ADD4 pAdd4 Address Line 4
EMAIL pEmail Email Address
FAX pFax Fax Number
FIRSTNAME pFirstName First Name
MOBILE pMobile Mobile Number
PHONE pPhone Phone Number
POSI pPosition Contact Position
POSTCODE pPostCode Post Code
SURNAME pSurname Surname
TITLE pTitle Contacts Title (Mr, Mrs etc)
VOIP pVoip VOIP Number

POSTJOBTXN – Parameters Explained

The following parameters are used in the procedure POSTJOBTXN. Required Parameters are
underlined.

 pAudit

The transaction audit number, if not supplied then it is automatically generated
Data type is Numeric

 pAutoPrice

Pass a value of 1 to automatically determine the selling rate based on customer settings in

Infusion.
 Data type is Numeric

 pCostRate

The cost rate of the item excluding GST. Note if pAutoPrice is set to 1 this will be calculated also
 Data type is Numeric

 pDate

Date of the transaction
Data type is Date

 pDepartment

Department code, this value is case sensitive and must match that in Infusion.
Data type is AlphaNumeric

 pDesc

Line Description for the transaction
This value is also inserted into the NOTES field if the pNotes parameter empty.
Data type is AlphaNumeric

 pDiscount

Discount Percentage to apply to the selling price. (12.50 = 12.5%)
Data type is Numeric

 pFrom

Start time for Staff transactions (24 hour preferred) 09:00, 13:30 etc
Data type is AlphaNumeric

 pJobID

Job ID, this must exist in Infusion. Alternatively you can ignore this and provide the link number
(pLink). This value is case sensitive. If pLink and pJobID are passed then pJobID takes
precedence if they refer to different jobs. Either one or both of pLink and pJobID must be
provided.
Data type is AlphaNumeric

 pLink

Link number of the Job. If you do not know this then leave it as default. If pLink and pJobID are
passed then pJobID takes precedence if they refer to different jobs. Either one or both of pLink
and pJobID must be provided.
Data type is Numeric

 pLocation

Location number for this transaction, if not provided then the value assigned to the job in Infusion
is used
Data type is Numeric

 pNotes

Notes Information. This value is inserted into the NOTES field of the JOBLN record.
Data type is AlphaNumeric

 pPCode

Product Code from Infusion.
Data type is AlphaNumeric

 pQty

Quantity for the transaction, any value other than 0 is valid.
Data type is Numeric

 pRate

Selling Rate (Excluding GST)
Data type is Numeric

 pSerial

Product Serial Number. Only used/required if the product is set to track sold serial number in
Infusion.

 Data type AlphaNumeric

 pTo

End time for Staff transactions (24 hour preferred) 09:00, 13:30 etc
Data type is AlphaNumeric

POSTGLTXN – Parameters Explained

The following parameters are used in the procedure POSTGLTXN. Required Parameters are
underlined.

 pAudit

Audit Number for the transaction
Data type is Numeric

 pBatch

Batch ID for the transaction
Data type is AlphaNumeric

 pCredit

Credit amount for the Transaction (pass as a positive figure)
Data type is Numeric

 pDate

Date of the Transaction
Data Type is Date

 pDebit

Debit amount for the Transaction (pass as a positive figure)
Data type is Numeric

 pGLID

GLID to post the transaction to
Data type is AlphaNumeric

 pRef

A reference for the Transaction
Data type is Alpha Numeric

 pTrans

Transaction Description – Note this field must not be blank
Data type is AlphaNumeric

 pTrans2

Additional Transaction Description
Data type is AlphaNumeric

UPDATEINVHEADER – Parameters Explained

The following parameters are used in the procedure UPDATEINVHEADER

You must populate the parameter pLink with the link number of the invoice you wish to update.
Remember this can only be a pending invoice.

This list contains the parameter to pass and the matching variable which should be populated with the
value you wish to replace.

Parameter Variable to be populated. Field Replaced

ACCOUNT pAccount Customer Number
ADD1 pAdd1 Address Line 1
ADD2 pAdd2 Address Line 2
ADD3 pAdd3 Address Line 3
ADD4 pAdd4 Address Line 4
ATTNLINK pAttnLink Charge To Attention Link
DADD1 pDAdd1 Delivery Address Line 1
DADD2 pDAdd2 Delivery Address Line 2
DADD3 pDAdd3 Delivery Address Line 3
DADD4 pDAdd4 Delivery Address Line 4
DATE pDate Invoice Date
DDATE pDDate Delivery Date
DELATTNLINK pDelAttnLink Deliver To Attention Link
DELNOTES pNotes Delivery Notes
DELSTATUS pDelStatus Delivery Status
DPOSTCODE pDPostCode Delivery Post Code
DNAME pDName Delivery Name
DUEDATE pDueDate Invoice Due Date
ENTEREDBY pEnteredBy Entered by
FREIGHT pFreight Freight (Invoice footer)
FAX pFax Delivery Fax Number
HDRDATE1 pHdrDate1 Custom Fields – Date 1
HDRDATE2 pHdrDate2 Custom Fields – Date 2
HDRUSER1 pHdrUser1 Custom Fields – User 1
HDRUSER2 pHdrUser2 Custom Fields – User 2
HDRUSER3 pHdrUser3 Custom Fields – User 3
HDRUSER4 pHdrUser4 Custom Fields – User 4
HDRUSER5 pHdrUser5 Custom Fields – User 5
HDRUSER6 pHdrUser6 Custom Fields – User 6
INVORDNUM pInvOrdnum Order Number
NAME pName Customer Name
NOTES pNotes Notes
PHONE pPhone Delivery Phone Number
POSTCODE pPostCode Post Code
REF pRef Reference
REP pRep Sales Rep
ROUNDING pRounding Rounding (Invoice footer)
TITLE pTitle Invoice Title
INVNUMBER pInvNumber Invoice Number

TOTALINVOICE – Parameters Explained

You must populate the parameter pLink with the link number of the invoice you wish to update.

Remember this can only be a pending invoice.

CREATEINVOICE – Parameters Explained

The following parameters are used in the procedure CREATEINVOICE. Required Parameters are
underlined.

 pAccount

Customer Account the invoice is to be charged to.
Data Type is Numeric

 pAdd1, pAdd2, pAdd3, pAdd4, pPostCode

Customers Charge to Address Details
Data Type is AlphaNumeric

 pAttnLink

Link number of the contact for the Charge To Attention Field.
0 = Accounts Payable, 1 = None
Any other value should be the Link Number from CUSTCONT

Data Type is Numeric

 pDAdd1, pDAdd2, pDAdd3, pDAdd4, pDPostCode

Customers Deliver to Address Details
Data Type is AlphaNumeric

 pDate

Date of the Transaction
Data Type is Date

 pDDate

Invoice Delivery Date
Data Type is Date

 pDelAttnLink

Link number of the contact for the Deliver To Attention Field.
0 = Inwards Goods, 1 = None
Any other value should be the Link Number from CUSTCONT

Data Type is Numeric

 pEnteredBy

Staff code of the person who entered the Invoice
Data Type is AlphaNumeric

 pFreight

Freight amount for the invoice footer. (Inclusive or exclusive of GST depending on your Product
Price Settings)

Data Type is Numeric

 pHdrUser1, pHdrUser2, pHdrUser3, pHdrUser4, pHdrUser5, pHdrUser6

Customer Fields User 1 to User 6
Data Type is AlphaNumeric

 pHdrDate1, pHdrDate2

Customer Fields User Dates 1 and 2
Data Type is Date

 pInvNumber

Invoice Number
Data Type is AlphaNumeric

 pInvOrdnum

Customers order number
Data Type is AlphaNumeric

 pLocation

Number of the location the invoice is to be generated from.
Data Type is Numeric

 pName

Customers Charge to Name
Data Type is AlphaNumeric

 pRep

Staff code of the Sales Rep
Data Type is AlphaNumeric

 pRounding

Rounding amount for the invoice footer.
Data Type is Numeric

 pTitle

Invoice Title
Data Type is AlphaNumeric

Note:

The pDelStatus parameter does not populate the Invoice Delivery Status on CreateInvoice(). Please call
the UpdateInvHeader() function after CreateInvoice() to do this.

INVOICEADDLINE – Parameters Explained

The following parameters are used in the procedure INVOICEADDLINE. Required Parameters are
underlined.

 pLink

Invoice Link Number – This must be supplied and must relate to a Pending Invoice.
Data Type is Numeric

 pPCode

 (Only Manditory when Adding a Line for a Product Code. The parameter is not used
 when adding a line for a GL ID. It should be left as an empty string when adding a
 GL ID line)

Product Code from the Products file.

From IBSGateway837 forward you can pass the Primary Barcode in this field instead. It will first
look for a matching Product Code, but then move to search the Barcode field. If a match is
found as a barcode, the pPCode parameter is updated by the Gateway to the Product Code value
and that is the value which will be stored in the Invoice line's code field.

You can pass “/N” as the product code and a Notes Line will be created. The text for this should
be placed in the pNotes parameter. Any dollar or qty values passed when using “/N” will be
ignored.

Data Type is AlphaNumeric

 pGLID

 (Only Manditory when Adding a Line for a GL ID. The parameter is optional
 when adding a line for a Product Code)

Supply the GL ID value only (no leading / as you would in the Customer Invoice Entry Screen)

Data Type is AlphaNumeric

 pCostRate

Unit Cost Rate (Excluding GST)

Data Type is Numeric

 pDesc

Description Text
Data Type is AlphaNumeric

 pDiscount

Discount Percentage

If pAutoPrice is set then this value will be overwritten with the determined value.

Data Type is Numeric

 pNotes

Notes Text
Data Type is AlphaNumeric

 pSerial

Serial Number of a Serial Tracked item. If the item is not Serial Tracked this is ignored.
Data Type is AlphaNumeric

 pQty

Quantity Supplied
Data Type is Numeric

 pRate

Selling Rate (Including or Excluding GST based on your Product Defaults setting)

If pAutoPrice is set then this value will be overwritten with the calculated value.

Data Type is Numeric

 pAutoPrice

Auto Price Flag. Populate with any value other than empty string to have the DLL calculate the
selling rate based on Infusion’s best price rules.

Note: This function is not run for a GL ID line. In this case use the pRate, pDiscount, and
pCostRate parameters.

Data Type is AlphaNumeric

 pUSER1 (pUSER2)

Custom Fields for the Purchase Order Line.

Data Type is AlphaNumeric

CUSTOMERBACKORDER_CREATE – Parameters Explained

The following parameters are used in the procedure CUSTOMERBACKORDER_CREATE. Required
Parameters are underlined.

 pAccount

Customer Account the invoice is to be charged to.
Data Type is Numeric

 pAdd1, pAdd2, pAdd3, pAdd4, pPostCode

(Recommended as this is passed to the Invoice when created)

Customers Charge to Address Details
Data Type is AlphaNumeric

 pDAdd1, pDAdd2, pDAdd3, pDAdd4, pDPostCode

(Recommended as this is passed to the Invoice when created)

Customers Deliver to Address Details
Data Type is AlphaNumeric

 pDate

Date of the Transaction
Data Type is Date

 pHdrUser1, pHdrUser2, pHdrUser3, pHdrUser4, pHdrUser5, pHdrUser6

Customer Fields User 1 to User 6
Data Type is AlphaNumeric

 pInvOrdnum

Customers order number
Data Type is AlphaNumeric

 pLocation

Number of the location the invoice is to be generated from.
Data Type is Numeric

 pName

(Recommended as this is passed to the Invoice when created)

Customers Charge to Name
Data Type is AlphaNumeric

 pNotes

Notes from the Invoice Header
Data Type is AlphaNumeric

 pRep

Staff code of the Sales Rep
Data Type is AlphaNumeric

 pRef

Customer Reference
Data Type is AlphaNumeric

 pTitle

Invoice Title
Data Type is AlphaNumeric

INVOICEADDLINE – Parameters Explained

The following parameters are used in the procedure INVOICEADDLINE. Required Parameters are
underlined.

 pLink

Invoice Link Number – This must be supplied and must relate to a Pending Invoice.
Data Type is Numeric

 pPCode

Product Code from the Products file.

Note this property does not check the Barcode field values.

Data Type is AlphaNumeric

 pDesc

Description Text
Data Type is AlphaNumeric

 pDiscount

Discount Percentage

If pAutoPrice is set then this value will be overwritten with the determined value.

Data Type is Numeric

 pNotes

Notes Text
Data Type is AlphaNumeric

 pBack

Quantity placed on Backorder
Data Type is Numeric

 pRate

Selling Rate (Including or Excluding GST based on your Product Defaults setting)

If pAutoPrice is set then this value will be overwritten with the calculated value.

Data Type is Numeric

 pAutoPrice

Auto Price Flag. Populate with any value other than empty string to have the DLL calculate the
selling rate based on Infusion’s best price rules.

Data Type is AlphaNumeric

 pUSER1 (pUSER2)

Custom Fields for the Purchase Order Line.

Data Type is AlphaNumeric

CREATEQUOTE – Parameters Explained

The following parameters are used in the procedure CREATEQUOTE. Required Parameters are
underlined.

 pAccount

Customer Account the invoice is to be charged to.
Data Type is Numeric

 pAdd1, pAdd2, pAdd3, pAdd4, pPostCode

Customers Charge to Address Details
If these are not supplied, then the values from CUSTOMER.DBF are used

Data Type is AlphaNumeric

 pDAdd1, pDAdd2, pDAdd3, pDAdd4, pDPostCode

Customers Deliver to Address Details
If these are not supplied, then the values from CUSTOMER.DBF are used

Data Type is AlphaNumeric

 pDate

Date of the Transaction
Data Type is Date

 pEnteredBy

Staff code of the person who entered the Invoice
Data Type is AlphaNumeric

 pFreight

Freight amount for the quote footer. (Inclusive or exclusive of GST depending on your Product
Price Settings)
Data Type is Numeric

 pJobID

Job Management JOBID value.
Data Type is AlphaNumeric

 pHdrUser1, pHdrUser2, pHdrUser3, pHdrUser4, pHdrUser5, pHdrUser6

Customer Fields User 1 to User 6
Data Type is AlphaNumeric

 pHdrDate1, pHdrDate2

Customer Fields User Dates 1 and 2
Data Type is Date

 pQuoteNumber

Quote Number
Data Type is AlphaNumeric

 pInvOrdnum

Customers order number
Data Type is AlphaNumeric

 pLocation

Number of the location the quote is to be generated from.
Data Type is Numeric

 pName

Customers Charge to Name
Data Type is AlphaNumeric

 pNotes

Notes for the header of the Quote
Max length is 250 characters, Line breaks may not be supported.
Data Type is AlphaNumeric

 pRef

Reference Field
Data Type is AlphaNumeric

 pRep

Staff code of the Sales Rep
Data Type is AlphaNumeric

 pRounding

Rounding amount for the invoice footer.
Data Type is Numeric

 pSatus

Status CODE for the Quote.
If not set, then *ACTIVE* is used.
Data Type is AlphaNumeric

 pTitle

Quote Title
Data Type is AlphaNumeric

 pType

Type CODE for the Quote.
If not set, then *STD* is used.
Data Type is AlphaNumeric

QUOTEADDLINE – Parameters Explained

The following parameters are used in the procedure QUOTEADDLINE. Required Parameters are
underlined.

 pLink

Quote Link Number – This must be supplied and must relate to a Pending Quote.
Data Type is Numeric

 pPCode

Product Code from the Products file.

Note this property does not check the Barcode field values.

You can pass “/N” as the product code and a Notes Line will be created. The text for this should
be placed in the pNotes parameter. Any dollar or qty values passed when using “/N” will be
ignored.

Data Type is AlphaNumeric

 pCostRate

Unit Cost Rate (Excluding GST)

Data Type is Numeric

 pDesc

Description Text
Data Type is AlphaNumeric

 pDiscount

Discount Percentage

If pAutoPrice is set then this value will be overwritten with the determined value.

Data Type is Numeric

 pNotes

Notes Text
Data Type is AlphaNumeric

 pQty

Quantity Quoted
Data Type is Numeric

 pRate

Selling Rate (Including or Excluding GST based on your Product Defaults setting)

If pAutoPrice is set then this value will be overwritten with the calculated value.

Data Type is Numeric

 pAutoPrice

Auto Price Flag. Populate with any value other than empty string to have the DLL calculate the
selling rate based on Infusion’s best price rules.

Data Type is AlphaNumeric

 pUSER1 (pUSER2)

Custom Fields for the Quote Line.

Data Type is AlphaNumeric

GETGSTTYPE – Parameters Explained

The following parameters are used in the procedure GETGSTTYPE. Required Parameters are
underlined.

 pGSTType

GST Type as a character. Valid values are I, E, P, Q, R, S, X, Z, and C
Data Type is AlphaNumeric

POSTGSTTXN – Parameters Explained

The following parameters are used in the procedure POSTGSTTXN. Required Parameters are
underlined.

 pAudit

Audit Number for the transaction
Data type is Numeric

 pGSTType

Value returned from the function GETGSTTYPE
Data type is Numeric

 pDate

Date of the Transaction
Data Type is Date

 pPayment

Indicator that this is part of the GST Input Credits (Your Payments).
Pass a value of “Y” to indicate a payment, otherwise it will be treated as Income
Data Type AlphaNumeric

 pTrans

Transaction Description
Data type is AlphaNumeric

 pTrans2

Transaction Description Line 2
Data type is AlphaNumeric

 pRate

GST Inclusive Amount
This is always passed as a positive (unless its negative income or negative expense)
Data type is Numeric

 pGST

GST Content Amount
This is always passed as a positive (unless its negative income or negative expense)
Data type is Numeric

 pRef

Transaction Reference
Data type is AlphaNumeric

 pFlag

Indicator that this transaction is at the old GST Rate (12.5%) but dated after 1/10/2010
Pass a value of “Y” to indicate condition otherwise leave it blank
Data Type AlphaNumeric

POSTBANKRECTXN – Parameters Explained

The following parameters are used in the procedure POSTBANKRECTXN. Required Parameters are
underlined.

 pAudit

Audit Number for the transaction
Data type is Numeric

 pDate

Date of the Transaction
Data Type is Date

 pTrans

Transaction Description
Data type is AlphaNumeric

 pRate

GST Inclusive Amount
Pass this as a Positive for Deposit or Negative for Withdrawl
Data type is Numeric

 pRef

Transaction Reference
Data type is AlphaNumeric

 pGLID

GLID of the Bank Account
Data type is AlphaNumeric

POSTPRODTXN – Parameters Explained

The following parameters are used in the procedure POSTPRODTXN. Required Parameters are
underlined.

 pAudit

Audit Number for the transaction. If this is not provided then one will be assigned. Use the
NEXTAUDIT function to obtain this if required.
Data type is Numeric

 pCostRate

Used for Manual Sale Transaction only. GST Exclusive.
Data type is Numeric

 pDate

Date of the Transaction
Data Type is Date

 pDiscount

Discount Percentage. Only used on Manual Sale Transactions
Data type is Numeric

 pGSTRate

GST Rate. Only required if Manual Sale Transaction and the Selling Rate INCLUDES GST.
Data type is Numeric

 pLocation

Location ID (eg 1)
Data type is Numeric

 pRef

Transaction Reference
Data type is AlphaNumeric

 pPCode

Product Code
Data type is AlphaNumeric

 pQTY

Quantity
Data type is Numeric

 pRate

In the case of Write Off and Receipt this amount should be GST Exclusive. In the case of Manual
Sale this amount should be either GST Inclusive or GST Exclusive depending on the Infusion
Product Settings.
Data type is Numeric

 pRef

Transaction Reference
Data type is AlphaNumeric

 pSerial

Serial Number. Required if the Product code is set to track serial numbers.
Data type is AlphaNumeric

 pTrType

Transaction Type (case sensitive)
R – Receipt
M – Manual Sale
W – Write Off
Data type is AlphaNumeric

SUPP_UPDATEINVHEADER – Parameters Explained

The following parameters are used in the procedure SUPP_UPDATEINVHEADER

You must populate the parameter pLink with the link number of the Supplier Invoice you wish to update.
Remember this can only be a pending invoice.

This list contains the parameter to pass and the matching variable which should be populated with the
value you wish to replace.

Parameter Variable to be populated. Field Replaced

ACCOUNT pAccount Supplier Account Number
ADD1 pAdd1 Address Line 1
ADD2 pAdd2 Address Line 2
ADD3 pAdd3 Address Line 3
ADD4 pAdd4 Address Line 4
DATE pDate Invoice Date
DUEDATE pDueDate Invoice Due Date
ENTEREDBY pEnteredBy Entered by
FREIGHT pFreight Freight (Invoice footer)
HDRDATE1 pHdrDate1 Custom Fields – Date 1
HDRDATE2 pHdrDate2 Custom Fields – Date 2
HDRUSER1 pHdrUser1 Custom Fields – User 1
HDRUSER2 pHdrUser2 Custom Fields – User 2
HDRUSER3 pHdrUser3 Custom Fields – User 3
HDRUSER4 pHdrUser4 Custom Fields – User 4
HDRUSER5 pHdrUser5 Custom Fields – User 5
HDRUSER6 pHdrUser6 Custom Fields – User 6
INVORNUM pInvOrdnum Order Number
NAME pName Supplier Name
NOTES pNotes Notes
POSTCODE pPostCode Post Code
REF pRef Reference
ROUNDING pRounding Rounding (Invoice footer)
INVNUMBER pInvNumber Invoice Number

SUPP_CREATEINVOICE – Parameters Explained

The following parameters are used in the procedure SUPP_CREATEINVOICE. Required Parameters
are underlined.

 pAccount

Supplier Account the invoice is to be charged to.
Data Type is Numeric

 pAdd1, pAdd2, pAdd3, pAdd4, pPostCode

Supplier Address Details
If pAdd1 is left blank then the all address values will be obtained from the Suppliers Account

within Infusion

Data Type is AlphaNumeric

 pDate

Date of the Transaction
Data Type is Date

 pEnteredBy

Staff code of the person who entered the Invoice
Data Type is AlphaNumeric

 pFreight

Freight amount for the invoice footer. (Inclusive or exclusive of GST depending on your Product
Price Settings)
Data Type is Numeric

 pHdrUser1, pHdrUser2, pHdrUser3, pHdrUser4, pHdrUser5, pHdrUser6

Supplier Invoice User Fields User 1 to User 6
Data Type is AlphaNumeric

 pHdrDate1, pHdrDate2

Supplier Invoice User Fields User Dates 1 and 2
Data Type is Date

 pGSTInclFlag

Pass Y if the Invoice line items are GST Inclusive, pass any other string value for GST Exclusive
Data Type is AlphaNumeric

 pInvNumber

Invoice Number
Data Type is AlphaNumeric

 pInvOrdnum

Purchase Order Number
Data Type is AlphaNumeric

 pName

Supplier Name
If left blank then the Name will be obtained from the Suppliers Account within Infusion

Data Type is AlphaNumeric

 pRounding

Rounding amount for the invoice footer.
Data Type is Numeric

SUPP_INVOICEADDLINE – Parameters Explained

The following parameters are used in the procedure SUPP_INVOICEADDLINE. Required Parameters
are underlined.

 pLink

Invoice Link Number – This must be supplied and must relate to a Pending Supplier Invoice.
Data Type is Numeric

 pGLID

GL ID from the General Ledger.

You can pass “/N” as the value and a Notes Line will be created. The text for this should be
placed in the pNotes parameter. Any dollar or qty values passed when using “/N” will be
ignored.

Data Type is AlphaNumeric

 pDesc

Description Text
If left blank the GL Name value will be used

Data Type is AlphaNumeric

 pDiscount

Discount Percentage

Data Type is Numeric

 pNotes

Notes Text
Data Type is AlphaNumeric

 pQty

Quantity

Data Type is Numeric

 pRate

Unit Rate (Including or Excluding GST based on the pGSTInclFlag value which was set when the
Invoice Header was created)

Data Type is Numeric

 pUSER1 (pUSER2)

Custom Fields for the Purchase Order Line.

Data Type is AlphaNumeric

SUPP_INVOICETOTAL – Parameters Explained

You must populate the parameter pLink with the link number of the invoice you wish to update.

Remember this can only be a pending invoice.

CREATEPURCHASEORDER – Parameters Explained

The following parameters are used in the procedure CREATEPURCHASEORDER. Required
Parameters are underlined.

 pAccount

Supplier Account the Purchase Order is for.
Data Type is Numeric

 pAdd1, pAdd2, pAdd3, pAdd4, pPostCode

Supplier Address Details
If pAdd1 is left blank then the all address values will be obtained from the Suppliers Account

within Infusion

Data Type is AlphaNumeric

 pDAdd1, pDAdd2, pDAdd3, pDAdd4, pDPostCode

Delivery Address Details
If pDAdd1 is left blank then the all address values will be obtained from the Delivery Locations
Details within Infusion

Data Type is AlphaNumeric

 pDName

Delivery Location Name
If left blank then the Name will be obtained from the Delivery Locations Details within Infusion

Data Type is AlphaNumeric

 pDate

Date of the Transaction
Data Type is Date

 pDDate

Required Delivery Date
Data Type is Date

 pEnteredBy

Staff code of the person who entered the Invoice
Data Type is AlphaNumeric

 pFreight

Freight amount for the Purchase Order footer. (Inclusive or exclusive of GST depending on your
Product Price Settings)
Data Type is Numeric

 pHdrUser1, pHdrUser2, pHdrUser3, pHdrUser4, pHdrUser5, pHdrUser6

Purchase Order User Fields User 1 to User 6
Data Type is AlphaNumeric

 pHdrDate1, pHdrDate2

Purchase Order User Fields User Dates 1 and 2
Data Type is Date

 pLocation

Purchase Order Location
Data Type is Numeric

 pPOOrdnum

Purchase Order Number
Data Type is AlphaNumeric

 pPOOrdType

Purchase Order Type

 1 = Standard Order
 2 = Multi Location Order
 3 = Customer Special Order
 4 = Job Management Order

If you are creating a Customer Special Order, then the additional fields for the Customer Details
etc need to be added to the Purchase Order either manually (in the Infusion Interface) or by using
the Replace commands after creating the Purchase Order shell. Details of what is required for
this can be obtained from Infusion Support.

 pName

Supplier Name
If left blank then the Name will be obtained from the Suppliers Account within Infusion

Data Type is AlphaNumeric

 pRounding

Rounding amount for the invoice footer.
Data Type is Numeric

PURCHASEORDERADDLINE – Parameters Explained

The following parameters are used in the procedure PURCHASEORDERADDLINE. Required
Parameters are underlined.

 pLink

Purchase Order Link Number – This must be supplied and must relate to a Saved Purchase
Order.

Data Type is Numeric

 pPCode

Product Code from the Products table.

Data Type is AlphaNumeric

 pAutoPrice

If this value is set to anything other than a blank string, the DLL will obtain the cost price rate from
Infusion using the Infusion Pricing Logic.

Data Type is AlphaNumeric

 pDesc

Description Text
If left blank the Products Description value will be used

Data Type is AlphaNumeric

 pDiscount

Discount Percentage

Data Type is Numeric

 pQty

Quantity Ordered

Data Type is Numeric

 pCostRate

Unit Rate (Excluding GST)

Data Type is Numeric

 pDiscount

Discount Percentage

Data Type is Numeric

 pLocation

Location Number for Multi Location Orders Only

Data Type is Numeric

 pPOJobID

Job ID for Job Management Orders Only

 Data Type is AlphaNumeric

 pUSER1 (pUSER2)

Custom Fields for the Purchase Order Line.

Data Type is AlphaNumeric

TOTALPURCHASEORDER – Parameters Explained

Populate the parameter pLink with the link number of the Purchase Order to be totaled.

This can only be a Pending Purchase Order (Saved or Ordered).

UPDATEPOHEADER – Parameters Explained

The following parameters are used in the procedure UPDATEINVHEADER

Populate the parameter pLink with the link number of the Purchase Order to be updated. Only Pending
Purchase Orders (Ordered or Saved) can be updated.

This list contains the parameter to pass and the matching variable which should be populated with the
value you wish to replace.

Parameter Variable to be populated. Field Replaced

ADD1 pAdd1 Address Line 1
ADD2 pAdd2 Address Line 2
ADD3 pAdd3 Address Line 3
ADD4 pAdd4 Address Line 4
DADD1 pDAdd1 Delivery Address Line 1
DADD2 pDAdd2 Delivery Address Line 2
DADD3 pDAdd3 Delivery Address Line 3
DADD4 pDAdd4 Delivery Address Line 4
DATE pDate Invoice Date
DPOSTCODE pDPostCode Delivery Post Code
DNAME pDName Delivery Name
ENTEREDBY pEnteredBy Entered by Staff Member
FREIGHT pFreight Freight (Invoice footer)
HDRDATE1 pHdrDate1 Custom Fields – Date 1
HDRDATE2 pHdrDate2 Custom Fields – Date 2
HDRUSER1 pHdrUser1 Custom Fields – User 1

HDRUSER2 pHdrUser2 Custom Fields – User 2
HDRUSER3 pHdrUser3 Custom Fields – User 3
HDRUSER4 pHdrUser4 Custom Fields – User 4
HDRUSER5 pHdrUser5 Custom Fields – User 5
HDRUSER6 pHdrUser6 Custom Fields – User 6
NAME pName Customer Name
NOTES pNotes Notes
ORDEREDBY pRep Ordered by Staff Member
POSTCODE pPostCode Post Code
REQDATE pDDate Required Date

Sample code based on VB.NET 2010

Creating a DLL Instance & Logging Into Infusion

Add theDLL as a Reference (COM)
Add the necessary IMPORTS line to the start of the form or method

Create an object reference as follows:

 Dim gw As New ibsGateway.7.0.14_Gateway

Set the path to the Infusion Data and Login as follows:

 gw.setpath("c:\infusion\data")
 gw.login("Your Program Name")

Logging Out of Infusion

gw.Logout()

Destroying a DLL Instance (Release)

 gw.Destroy()

Obtaining a list of all Customers

The DLL does not return a single list of all customers (or other list). You must open the relevant
database, iterate through it retrieving the fields you desire, store them locally and then close the database
when finished. An example is below.

 Dim lnRecCount As Integer
 Dim lnAccount As Integer
 Dim lcName As String
 Dim lcAdd1 As String

 gw.open("Customer", "a_customer_get")
 gw.select("a_customer_get")
 lnRecCount = gw.reccount()
 gw.GoTop()
 For nCount = 1 To lnRecCount

 lnAccount = gw.get("Account")
 lcName = gw.get("Name")
 lcAdd1 = gw.get("Add1")
 gw.Skip("a_customer_get")

 Next

 gw.close("a_customer_get")

The same logic should be used for all lists, Customers, Products, Suppliers, GL Codes etc.

Product Prices

The product prices in Infusion are stored either GST Inclusive or Exclusive based on a user setting. This
setting can be retrieved as follows:

 gw.open("infdata", "a_infdata_get")
 gw.select("a_infdata_get")
 llGSTSetting = gw.get("stkincl")
 gw.close("a_infdata_get")

The value llGSTSetting with be a logical value (true or false). Depending on your system, this may be
returned as a 1 or a 0 also.

There are 8 standard price levels in Infusion, these are stored in the products master table.
(PRODUCTS.DBF). The fields are SELL1, SELL2 etc.

A customer will be assigned to one of these price levels, but is not limited to using that level. The field
which contains this setting is CUSTOMER.PRICELVL. This is a string field, and as long as the client is
not using additional price levels, the values will be 1,2,3 etc in the first position. These simply map then
to the SELL1, SELL2 fields.

Infusion does allow for Quantity Price Breaks. This is where when a customer purchases over a given
quantity the price changes. There can be three breaks per product (per price level). You will know
these are active by querying the QB1, QB2 etc field. One for each price level. The return value is
Logical (same as the GST Inclusive Setting above)

If there are quantity breaks, then this will return True.

There are a set of 6 fields for each price level.

QB1Q1 QB1P1 The quantity required to get the price is stored in Q1 and its UNIT price in P1
QB1Q2 QB1P2
QB1Q3 QB1P3

Infusion also allows for a PROMO Price to be set. If there are Quantity Breaks active, then Promo Prices
are NOT available for the given product / price level.

PROMO1 The per unit price
FROM1 The start date of the promo price. (blank, no start date)
TO1 The end date of the promo price. (blank, no end date)

Infusion also allows for Customer specific pricing (Contract Rates) per product. This takes priority over
ALL other pricing structures.

There is also a discount matrix and default discount value which may be applied to the customers price.

The full pricing structure is quite complex and is not fully explained above. Currently the DLL has a Rate
Calculation function built into the Invoice creation functions, but none to just give you the price for the
customer on the fly.

GST Codes

The GST Code for the selling Rate is stored on each product in the GSTCAT field. It relates to a record
in the GSTCODES.DBF. The RATE field is the rate which you should apply.

If a customer is International, then the flag in CUSTOMER.GSTZERO will be True, in which case the
GSTCODES.CODE of “Z” should always be used.

GL Codes

GL IDs are stored on a three tier basis. PRODUCT By LOCATION, LOCATION, PRODUCT.

Checking PRODBALS.DBF (CODE = xxxxx and LOCATION = nn) for a value in SALES. If this is empty
then step to lower level
Checking LOCATIONS.DBF (LOCNUM = nn) for a value in SALES. If this is empty then step to lower
level

Checking PRODUCTS.DBF (CODE = xxxxx) for a value in SELLGL. (This should not be empty)

Updating a Customer

 Dim lnRetVal As Integer
 Dim lnAccount As Integer
 Dim lcAdd1 As String

 lnAccount = 2
 lcAdd1 = "My New Address"

 gw.open("Customer", "a_customer_update")
 gw.select("a_customer_update")
 lnRetVal = gw.locate("account=" + lnAccount.ToString)

 If lnRetVal = 1 Then
 ' Found
 If gw.reclock() = 1 Then

 ' Yes it is locked (and yes the zero return value is correct)

 gw.replace("Name", "My New Name")
 gw.replace("Add1", lcAdd1)

 gw.recunlock() ' Dont forget to unlock the record.

 End If

 Else
 ' Not Found
 End If

 gw.close("a_customer_update")

Adding a Customer
There is a function for adding a Customer. You can either pass it an account number or obtain one from
the system.

 ' Pass Account Value (User assigned)

 Dim lnRetVal As Integer

 lnRetVal = gw.CreateCust(1234)
 If lnRetVal = 1 Then
 ' Created
 gw.open("customer", "a_customer_add")
 gw.locate("account=1234")
 If gw.reclock() = 1 Then

 'record locked ready to update

 gw.replace("Name", "My Name")

 gw.recunlock()

 Else

 ' not likley to happen

 End If

 gw.close("a_customer_add")

 Else

 ' Account Number already exists or some other error, account not created.
 End If

You can get the next system generated number by calling the following function. Then use it in the
example above in place of the 1234

 lnNewAccount = gw.nextcust(0)

Any value other than zero should be treated as the next account number. Zero indicates that auto
numbering is not active or some other access issue.

Create an Invoice

Dim nInvNum As Integer

 Dim dDate As Date

 dDate = New DateTime(2010, 10, 1).Date

 gw.setpath("c:\infusion\data")
 gw.PINVNUMBER = gw.nextinv(0).ToString.Trim
 gw.PACCOUNT = 1234
 gw.PDATE = dDate
 gw.PLOCATION = 1

 nInvNum = gw.PINVNUMBER

 Dim nInvLink As Integer

 nInvLink = gw.CreateInvoice()

 If nInvLink <> 0 Then

 gw.varreset()
 gw.PLINK = nInvLink
 gw.PAUTOPRICE = "Y"
 gw.PPCODE = “ABC”
 gw.PQTY = 2
 gw.InvoiceAddLine()

 gw.varreset()
 gw.PLINK = nInvLink
 gw.PAUTOPRICE = "Y"
 gw.PPCODE = “DEF”
 gw.PQTY = 3
 gw.InvoiceAddLine()

 gw.varreset()
 gw.PLINK = nInvLink
 gw.PAUTOPRICE = "Y"
 gw.PPCODE = “AAA”
 gw.PQTY = 4
 gw.InvoiceAddLine()

 End If

 gw.TotalInvoice()

